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Introduction 
 

Cavalieri’s principle is at the heart of the study of volumes, and it forms a natural transition to 
the use of calclulus to compute volumes. This workbook is intended to help students in 
grades 8 and higher develop get an informal sense of the limit-type arguments used in 
calculus and develop intuition about volume and surface area. 

Activities in this workbook and the Common Core State 
Standards (CCSS) 

CCSS for Mathematical Content supported by activities in this workbook 
HSG.GMD.A1 
Give an informal argument for the formulas for the circumference of a circle, area of a circle, 
volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and 
informal limit arguments. 
 
HSG.GMD.A2  
Give an informal argument using Cavalieri's principle for the formulas for the volume of a 
sphere and other solid figures. 
 
HSG.GMD.A3 
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* 

CCSS for Mathematical Practice supported by activities in this workbook 
MP.1 Make sense of problems and persevere in solving them. 

Each problem consists of a goal (prove that two solids have the same/different 
volume or surface area) and a set of constraints (the two dimensional polygons from 
which the solid is made). Students are encouraged to explore the different ways to 
decompose one object and rearrange them to make another. 

MP.2 Reason abstractly and quantitatively. 

Students are asked to abstract the ideas behind the tangible examples of Cavalieri’s 
principle to derive volume formulas for cones and pyramids. 

MP.3 Construct viable arguments and critique the reasoning of others. 
 
These problems lend themselves to students working together. The collaboration 
inevitably leads to students constructing arguments and evaluating each other’s 
reasoning. 
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MP.4 Model with mathematics 

Students use concrete models of rectangular prisms, parallelepipeds and tetrahedra 
to derive volume formulas. 

MP.6 Attend to precision 

Students must be accurate about comparing lengths, areas, and volumes in order to 
solve problems in this workbook. 

Learning objectives of this workbook 
The goals of this workbook are for students to: 

1) Experience the concepts of volumes and surface area kinesthetically, thereby 
helping develop intuition and confidence in dealing with these concepts in future 
problems. 

2)  To understand Cavalieri’s principle and how it is used to compute volumes 
3) To understand the derivation of the volume formula for pyramids and cones. 
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Cavalieri’s principle 
 

Cavalieri’s principle is key to deriving many volume formulas. It states that two solids have 
the same volume if their cross sections at the same  height have the same area. The figure 
below shows an example of the application of Cavalieri’s principle to two tetrahedra 
(triangular pyramids). 

 

Figure 1 

The tetrahedra are clearly different, yet they have the same volume because at each 
height, their cross sections are the same. Here is a rough idea of how this works. Let’s break 
up each tetrahedron into thin layers of equal thickness.  
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Figure 2 

Now let’s approximate each layer with a very short triangular prism: 

 

Figure 3 

Pair of prisms at the 
same height  



  

6 Volume and Cavalieri’s Principle                                           © 2018 Imathgination LLC 

   
 

Now let’s take a pair of prisms, one from each tetrahedron, such that they are at the same 
height of each tetrahedron, and set them on their narrow side. 

 

 

 

 

We find that their cross sections of are congruent equilateral triangles (due to perspective, 
this is not obvious from the picture). Therefore, the prisms have equal volume. They are just 
stacked differently in each of the two tetrahedra. But this doesn’t affect the volume of the 
tetrahedra, which is approximately the sum of the volumes of the short prisms. 

Note: in general, the cross sections need not be congruent to each other for the 
application of Cavalieri’s principle; they need only have the same area. 

Invite your students to make each of these tetrahedra and convince themselves that they 
have the same volume. 
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Volume of all things cone-like. 

Amazingly, the simple proof in the previous section is a key ingredient in deriving the famous 
formula for the volume of a cone or a pyramid with a polygonal base: 

𝑉 =
1
3
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 ∙ ℎ𝑒𝑖𝑔ℎ𝑡 

We start with the picture on the cover of this workbook, which shows how a cube can be 
decomposed into 4 congruent tetrahedra and one regular tetrahedron. The fact that the 
tetrahedra make a cube may not be obvious from the picture on the cover. Here is a 
picture of the 5 tetrahedra taped together into a cube (right), and the same cube 
constructed out of isosceles triangles (left): 

 

Figure 4 

If we take the 5 tetrahedra apart and lay them out, they will look like this: 

1  
2  

3  

4  

Regular 
tetrahedron 
(5)  is inside  
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Figure 5 

The numbers used to label the tetrahedra are the same as those used in Figure 4. Now you 
can see the regular tetrahedron inside. This is the same tetrahedron as you saw on the left of 
Figure 1. 

Here is what happens when you attach tetrahedra 3 and 4 together. 

1  

2  

3  

4  

3  

5  
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Figure 6 

On the right we see tetrahedra 3 and 4 taped together, and on the left we see thm actually 
attached. The left tetrahedron is congruent to the tetrahedron on the right of Figure 1. 

But we proved in the previous section that this tetrahedron has the same volume as the 
regular tetrahedron. Therefore, in Figure 5 the tetrahedron 5 has volume twice that of each 
of the tetrahedra 1-4. It follows that the volume of one of the tetrahedra 1-4 Is 1/6 the 
volume of a cube.   

The volume of the cube of side length s is, of course, s3. So we have just proved that the 

volume of one of the tetrahedra 1-4 is 
!
!
𝑠!. We can rewrite this last expression as 

1
6
𝑠! =

1
3
1
2
𝑠! 𝑠 . 

Notice that 
!
!
𝑠! is the area of the base of the tetrahedron, while s is its height.  

s 

s 

s 

3  
4 
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So we have proved that for a certain special case, the volume of a tetrahedron is  

𝑉 = !
!
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 ∙ ℎ𝑒𝑖𝑔ℎ𝑡. 

What about a more general tetrahedron? Let’s start with Figure 4, and elongate it by a 
factor of w. 

 

Figure 7 

Every one of the solids involved (5 tetrahedra and cube) just had their volume scaled by a 
factor of w. So, assuming we started out with a unit cube, it is still split up into 5 tetrahedra, 
with the middle one having volume that’s twice the volume of each of the smaller 
tetrahedra. We can repeat the same argument by scaling in the vertical direction by h and 
the other direction by l. So we actually have the more general case that the volume of this 

tetrahedron is also 𝑉 = !
!
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 ∙ ℎ𝑒𝑖𝑔ℎ𝑡.  

 

 

 

 

 

.   

 

l 

w 

h 
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Since the volume of the box is lwh, the volume of each tetrahedron is 1/6 lwh. We can 
recognize in this formula that ½ lw is the area of the base of the tetrahedron, while h is its 
height.  So we have that the area of a tetrahedron with two right angles is 1/3 area of base 
times height. Cavalieri’s principle allows us to apply this formula to  any cone-like object of 
the same height as our right angled tetrahedron and base of the same area (by that we 
mean one that comes to a point in a linear fashion, so that its cross sections at any height 
are the same as the cross sections of the tetrahedron). 

Recommended classroom plan 

The exercises are designed to work with a Jumbo Set of 512 tiles for a class with 7 groups of 
students working simultaneously. 

These are the shapes and quantities needed. Colors may vary. 
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Exercises 
 

Exercise 1 

 
Prove that the cube made of 12 isosceles triangles has the same volume 
as the parallelepiped (oblique rhombic prism)in 2 ways. 

 

a) Cavalieri’s principle 
b) Dissection 

 
Which object has the greater surface area? 
 

Exercise 2 
 
Prove that the parallelepiped below has the same volume as the long 
box in 2 ways. 
 

 
 

long box 

cube 

Parallelepiped 
or oblique 
rhombic prism 

Parallelepiped  
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a) Cavalieri’s principle 
b) Use the result of Exercise 1. 

Which object has the greater surface area? 
 

Exercise 3 
Prove that the parallelepiped (oblique square prism) has the same 
volume as the long box in 2 ways. 

 

1. Use Cavalieri’s principle 
2. Use dissection and the results of previous exercises. 

 
Which object has the greater surface area? 
 

Exercise 4 
Prove that the square prism and the oblique square prism have different 
volumes but the same surface area. 

 

long box 

Parallelepiped 
or oblique 
square prism 

square 
prism 

Oblique
square 
prism 
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Exercise 5  
Prove that the parallelepiped has the same volume as the oblique 
square prism but a different surface area. 

  

Exercise 6 
Determine which two of these objects have the same volume, and 
which two have the same surface area.  

 

* The rhombic base is the purple rhombus in the picture.  

  

Parallelepiped  

Oblique square prism  

Paralellepiped  

rhombic 
prism* 

square 
prism 
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Solutions 

Exercise 1 
 

  

                Figure 8 

 

a) From                 Figure 8, we see that the horizontal cross section of each solid (marked 
in red) is made of two right isosceles triangles. In one case the triangles form a 
square, while in the other they form a parallelogram. Of course, the square and the 
parallelogram have the same area. Also, the solids are the same height, as you can 
see from the dotted blue lines in                 Figure 8. In each case, the length of the 
dotted line, which is the side length of the right isosceles triangle, is the height of the 
solid. Therefore, by Cavalieri’s principle, they have the cube and the parallelepiped 
have the same volume. 

 

  

Figure 9     Figure 10 

 
b) You can subdivide the cube into 3 parts as shown in Figure 9 and rearrange them 

into a parallelepiped as shown in  Figure 10. 
 

The cube is made of 12 right isosceles triangles, while the oblique rhombic prism is made of 8 
right scalene triangles and 8 right isosceles triangles. “Subtracting” 8 right isosceles triangles 
from each side we need to compare the area of 
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4 right isosceles triangles   vs    8  right scalene triangles 

We can “divide” both sides by 2 and compare the area of  

2 right isosceles triangles   vs    4  right scalene triangles 

 

It is easy to see that the left hand side is a square whose lengths are smaller than the lengths 
of each of the sides of the rectangle on the right. Therefore, the oblique rhombic prism has 
greater surface area. We can actually intuit this result by noting that the cube is the more 
sphere-like of the two objects. Therefore, it has the smaller surface area. 

Exercise 2 

 

Figure 11 
a) From Figure 11 , you can see that the horizontal cross section of each solid (marked in 

red) is four right isosceles triangles. The height of each solid is equal to the length of 
one of the legs of the right isosceles triangles (dashed blue line). Therefore, by 
Cavalieri’s principle, they have the same volume. 

 
b) We saw in Exercise 1 that a certain oblique rhombic prism has the same volume as a 

cube. It so happens that two of these oblique rhombic prisms make the 
parallelepiped in Figure 11: 
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Figure 12 

 

Therefore, two of these oblique rhombic prisms have the same volume as two cubes, 
which have the same volume as the long box. 

 
The box is made of 20 right isosceles triangles, while the parallelepiped is made of 16 right 
isosceles triangles and 8 right scalene triangles. If we “subtract” 16 right isosceles triangles 
from each side, we will be comparing 
 
4 right isosceles triangles   vs    8  right scalene triangles 

We have already seen in a previous example that the 8 right scalene triangles have the 
greater area. Therefore, the parallelepiped has the greater surface area. 

Exercise 3 

 

Figure 13 
 

a) From Figure 13 you can see that the horizontal cross section of each solid (marked in 
red) is four right isosceles triangles. The height of each solid is equal to the length of 
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one of the legs of the right isosceles triangles (dashed blue line). This is a bit more 
challenging to see with the solid on the right (but easier to see in Figure 14, right).  By 
Cavalieri’s principle, the long box and oblique square prism have the same volume. 

 

Figure 14 

b) As seen in Figure 14, we can split the oblique square prism down the middle. Then we 
can reassemble these halves into the parallelepiped of Figure 11: 

 

Figure 15 

Now, we have already proved in Exercise 2 that the parallelepiped of Figure 15, left, has the 
same volume as the long box. Since the square oblique prism has the same volume as the 
parallelepiped of Figure 15, it also has the same volume as the box. 

The long box has surface area equal to 20 right isosceles triangles, while the oblique square 
prism has surface area equal to 8 right isosceles triangles and 16 right scalene triangles. We 
“subtract” 8 right isosceles triangles from each side to end up comparing the areas of  

12 right isosceles triangles   vs    16  right scalene triangles 
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Let us compute the areas of each of these quantities assuming that the hypotenuse of 
each type of triangle has length 1. 

The area of 12 right isosceles triangles is 3, while the area of the 16 right scalene triangles is 

4× !
!
= 2 3 > 3. So the oblique square prism has a greater surface area. 

Exercise 4 
While the horizontal cross sections of each solid ar the same, their heights are different. 

Each solid is made of 8 right isosceles triangles and 16 right scalene triangles, so they have 
the same surface area. 

Exercise 5 
It was shown in Exercise 3 and Exercise 4 that each of these solids has the same volume as 
the long box. Therefore, they have the same volume.  

The parallelepiped is made of 16 right isosceles triangles and 8 right scalene triangles, while 
the oblique square prism is made of 8 right isosceles triangles and 16 right scalene triangles. 

To compare these quantities, let us “subtract” 8 right isosceles triangles and 8 right scalene 
triangles from each side. Then we are comparing the areas of  

8 right isosceles triangles   vs    8  right scalene triangles 

Assume length 1 

1 

√3
2
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So we’re down to finding out which has larger area: a right isosceles triangle or a right 
scalene triangle, when both have a hypotenuse of the same length. It is easier to compare 
them in pairs, since two of each triangles makes a square or a rectangle. 

 

 

 

As before, let’s assume the hypotenuse has unit length. Connecting two right isosceles 

together, we get a square of area  
!
!
.  On the other hand, connecting two right scalene 

triangles together gives us a rectangle of area 
!
!
∙ !
!
= !

!
< !

!
. Interestingly, the areas of the 

two triangles are very close to one another. 
!
!
≈ 0.43 , which is quite close to 

!
!
= 0.5. 

Exercise 6 
All three solids have a cross sectional area equal to the area of 4 right isosceles triangles as 

shown in the picture. The height of the rhombic prism and the square prism are both 
!
!

, 

assuming the isosceles and scalene triangles each have a hypotenuse of unit length.  So the 
rhombic prism and the square prism have the same volume by Cavalieri’s principle. 

However, the parallelepiped has height equal to 
!
!

 , so it has a different volume.  

√3
2

 

√2
2

 

1
2
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The parallelepiped and the rhombic prism are both made of 16 right isosceles triangles and 
8 right scalene triangles, so they have the same surface area. The square prism, on the other 
hand, is made of 8 right isosceles triangles and 16 right scalene triangles, so it has a different 
surface area from the other two figures.  

 

   Figure 16 

 

 

Paralellepiped  

rhombic 
prism 

square 
prism 


